MultiEdTech 2017

1st International Workshop on Educational and Knowledge Technologies, ACM Multimedia Conference

October 23-27, 2017, Mountain View, CA, USA

Automatic MOOC video classification using transcript features and convolutional neural networks

Authors

<u>Houssem Chatbri</u>, Kevin McGuinness, Suzanne Little, Jiang Zhou, Noel E. O'Connor (Dublin City University, Ireland)

Keisuke Kameyama (Univ. Tsukuba, Japan)

Paul Kwan (University of New England, Australia)

Research Background	Our method	Experiments	Conclusions
Goal			
Input: MOOC	video	Output	: Topic labels
VIDEO	Video Classif	ier	

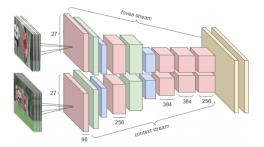
Advantages

- Automatic indexing
- Semantic retrieval

Existing methods

End to end systems

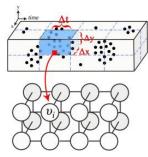
Action recognition using convolutional neural networks (CNN) [Karpathy et al. CVPR 2014]



A stack of frames is used as input to a CNN with two separate processing streams. Each stream process a different resolution.

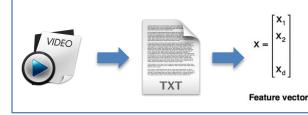
Feature extraction based systems

Action recognition using graphs of frame features [Jargalsaikhan et al. AVSS 2015]



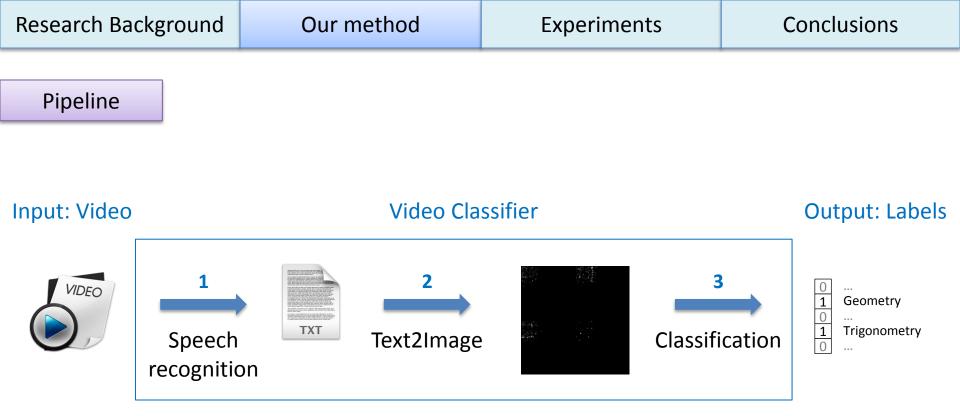
Spatiotemporal local features are extracted to build a feature graph. Then, an SVM classifier is used.

Systems that transform the problem domain



Educational video classification using transcripts [Brezeale and J Cook, IEEE Trans. SMC 2008]

Word frequencies are used to calculate feature vectors.



- 1. Speech recognition using the CMU Sphinx toolkit
- 2. Synthetic feature image (SFI) generation using a co-occurrence transform
- 3. Classification using a convolutional neural network (CNN)

Research Background	Our method	Experiments	Conclusions

Text2Image transform

Video transcript

greatest common factor of...

x: ASCII('e') - ASCII('r')
y: ASCII('t') - ASCII('a')
v: ASCII('e')

Use ASCI values to fill a 2D matrix

Our method

Experiments

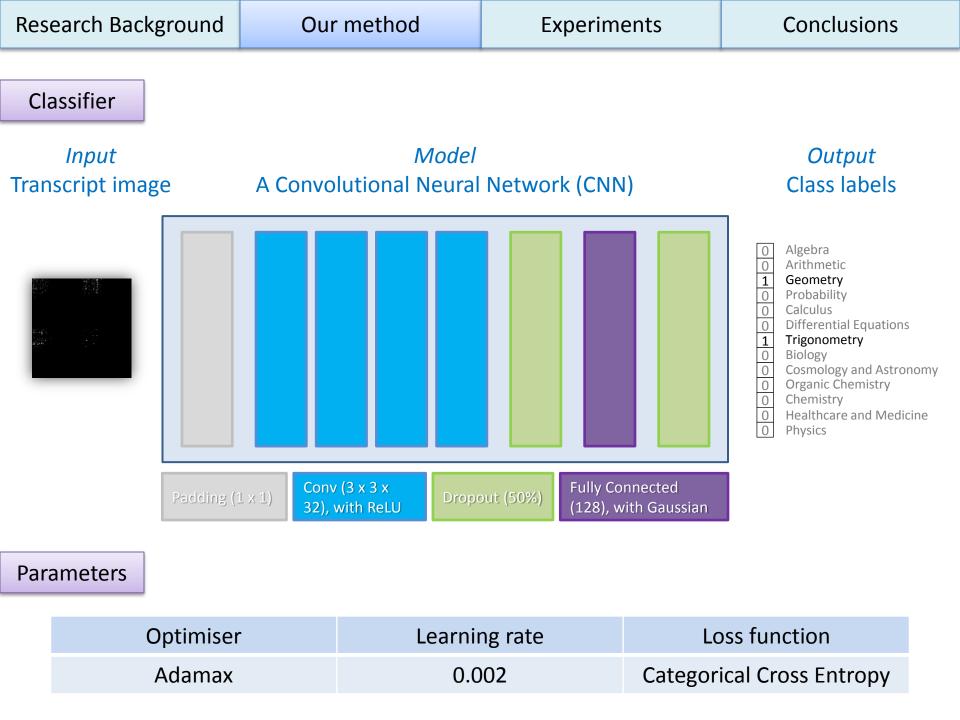
Conclusions

Text2Image transform

Video tran

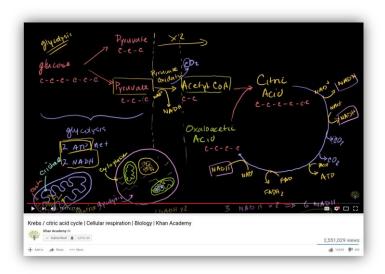
greatest common

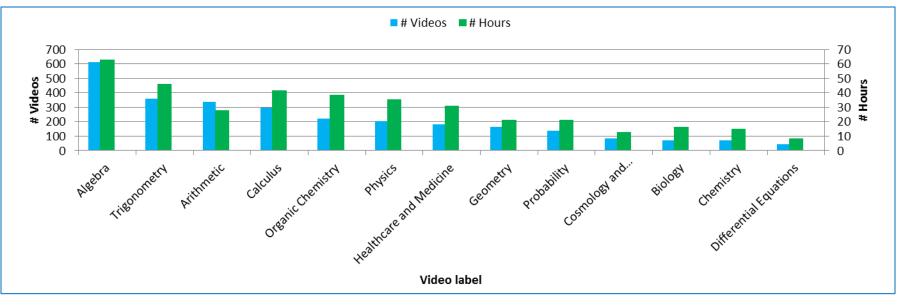
) matrix



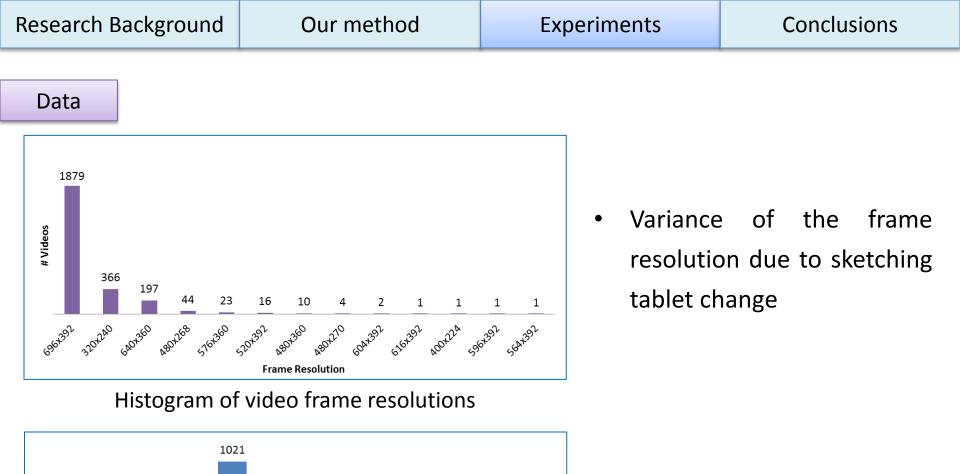
Data

- The "Khan Academy on a Stick" public dataset
- 2,545 videos recorded from 2006 to 2013





Video statistics per class. Total of 2,545 videos running 380 hours



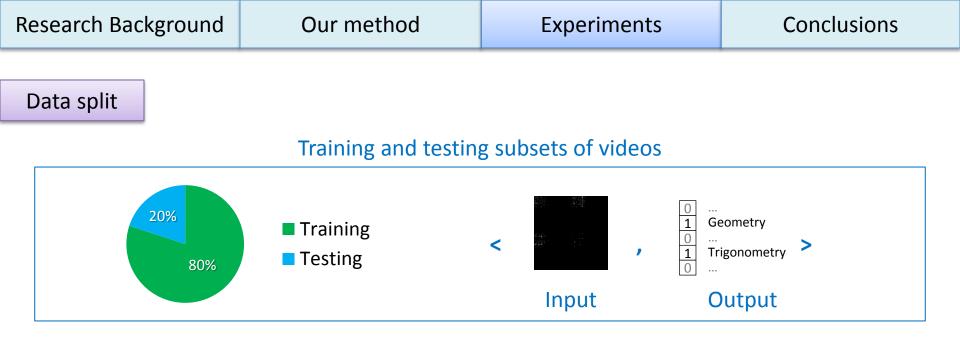
83 d < 2m $2m \le d < 5m$ $5m \le d < 10m$ $10m \le d < 15m$ $15m \le d < 20m$ $20m \le d < 30m$ $30m \le d$ Video Duration

705

Videos

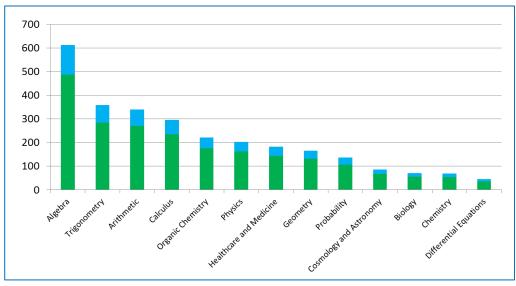
591

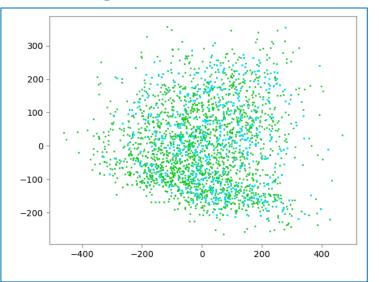
Histogram of video durations



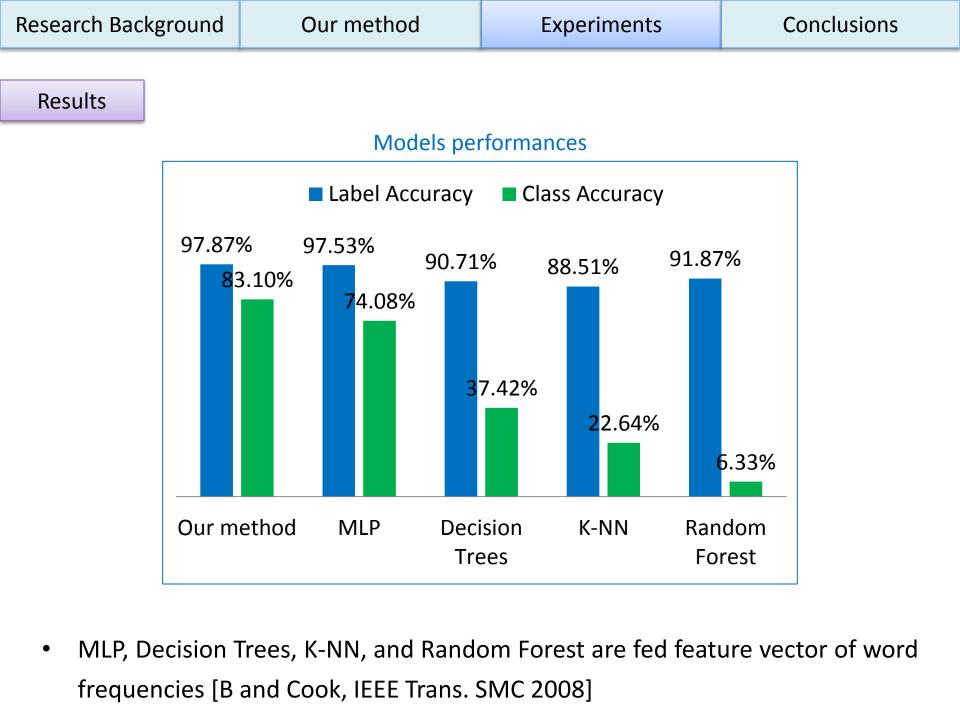
Video statistics per class (2,545 videos running 380 hours)

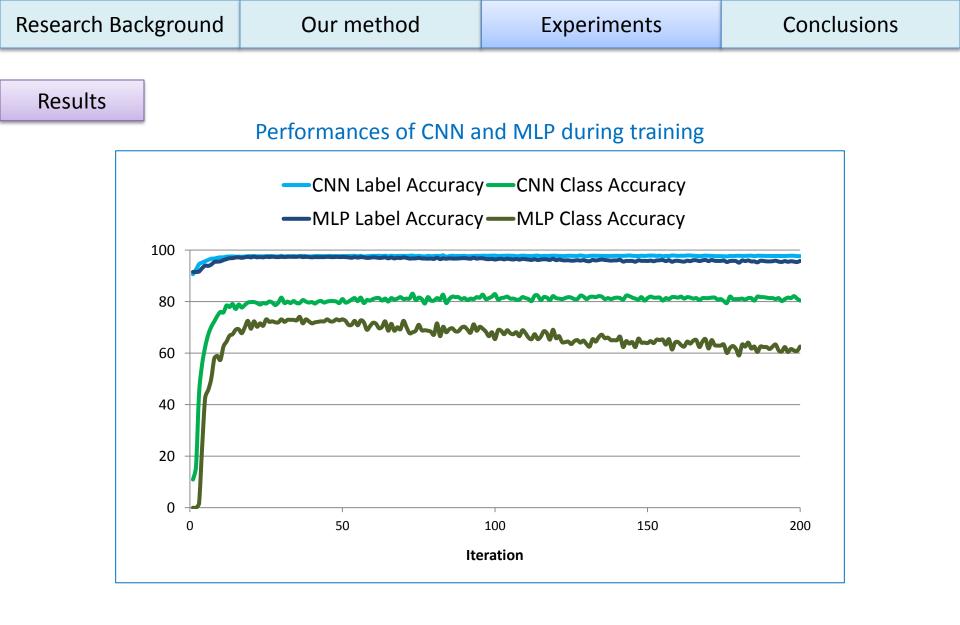
Projection of the training and testing sets using PCA extracted from SFIs





Research Backgro	ound	Our method	Experiments	Conclusions
Metrics				
$Label Accuracy = \frac{1}{K} \sum_{k=1}^{K} (1 - \frac{ \overrightarrow{y_{test}^k} - \overrightarrow{y_{predicted}^k} }{N}) \qquad Class Accuracy = \frac{1}{K} \sum_{k=1}^{K} 1, \text{ if } (\overrightarrow{y_{test}^k} = \overrightarrow{y_{predicted}^k}) \\ K: Number of images, N: 13 labels, y: output$				
Prediction Ground truth			Prediction Ground truth	0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
	Labe	<i>Accuracy</i> = 1.0		Class Accuracy = 1.0
Prediction Ground truth		0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0	Prediction Ground truth	0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
	Labe	Accuracy = 0.92		Class Accuracy = 0.0





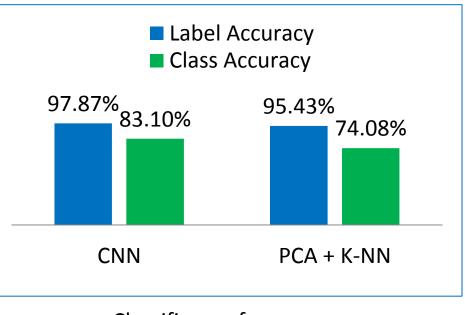
• MLP, Decision Trees, K-NN, and Random Forest are fed feature vector of word frequencies [B and Cook, IEEE Trans. SMC 2008]

Research Background	Our method	Experiments	Conclusions

Results

Why does the model work <u>despite of sparse inputs</u>?

Synthetic feature image

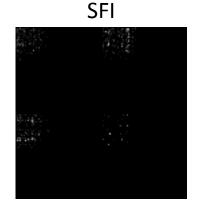


Classifier performances

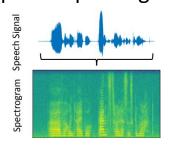
✓ CNNs perform well on sparse inputs, supporting results by Wang et al. ICCV 2015

Results

Why does the model work <u>despite of indistinctive data</u>?



Speech spectrograms



Random image

Zhang et al. (ICCV 2016) have trained a CNN with an ImageNet-size of random pixels images. The model memorised hem with high accuracy

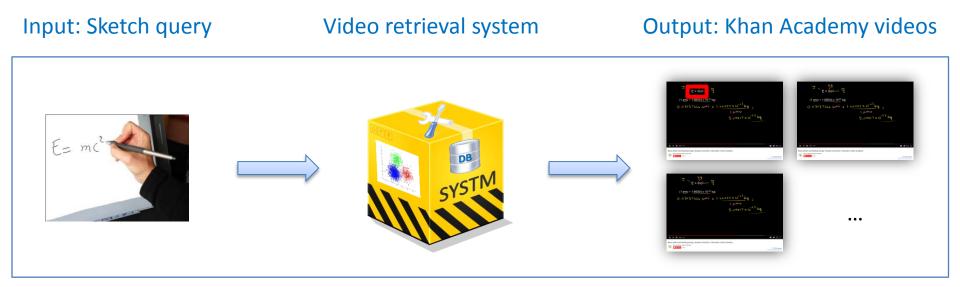
• Cummins et al. (INTERSPEECH 2017, ACM MM 2017) have use a pre-trained CNN on image spectrums

- Synthetic feature images (SFI) from low-level text features are used to train a CNN with a high accuracy
- ✓ Our results support *Cummins et al.* and *Zhang et al.*'s

Research Background	Our method	Experiments	Conclusions
Contribution			

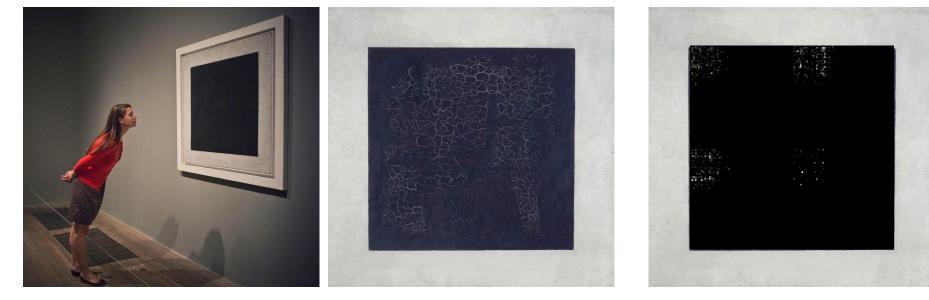
- Improving the state of the art in educational video classification
- Supporting research in deep learning using sparse and synthetic images

Future work



Research Background	Our method	Experiments	

Modern Art!



Malevich Square Kazimir Malevich (1915) *SFI Square* Dublin City University (2017)

Conclusions

References

Video classification methods

End-to-end methods

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. FeiFei. Large-scale video classification with convolutional neural networks. CVPR, 2014

Feature extraction based methods

S. Basu, Y. Yu, and R. Zimmermann. Fuzzy clustering of lecture videos based on topic modeling. IEEE CBMI, 2016

CNN architecture and settings

Adamax optimiser

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv, 2014

Reducing overfitting with dropouts

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014

Deep learning with synthetic feature images

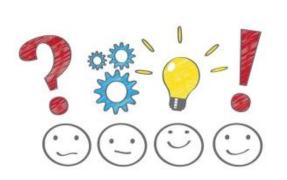
CNN trained on an ImageNet-sized dataset of random images

Hang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." arXiv, 2016

DNN trained with image spectrum images

Nicholas Cummins. An Image-based Deep Spectrum Feature Representation for the Recognition of Emotional Speech. ACM MM 2017

Thanks for your attention!



Acknowledgment

