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Goal 

Output: Topic labels Input: MOOC video 

Video Classifier 

Calculus 

Physics 

Arithmetic 

… 

Advantages 

• Automatic indexing 

• Semantic retrieval 
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Existing methods 

Feature extraction based systems 

Spatiotemporal local features are extracted to 

build a feature graph. Then, an SVM classifier 

is used. 

Action recognition using graphs of frame 

features [Jargalsaikhan  et al. AVSS 2015] 

End to end systems 

A stack of frames is used as input to a CNN 

with two separate processing streams. Each 

stream process a different resolution. 

Action recognition using convolutional neural 

networks (CNN) [Karpathy et al. CVPR 2014] 

Systems that transform the problem domain 

Educational video classification using transcripts [Brezeale and 

J Cook, IEEE Trans. SMC 2008] 

Word frequencies are used to calculate feature vectors. 



1. Speech recognition using the CMU Sphinx toolkit 

2. Synthetic feature image (SFI) generation using a co-occurrence transform 

3. Classification using a convolutional neural network (CNN) 
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Pipeline 

1 

Speech 
recognition 

Text2Image Classification 

2 3 

Input: Video Output: Labels Video Classifier 
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… 
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… 
Trigonometry 
… 



Text2Image transform 
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greatest common factor of… 

Video transcript 

great x: ASCII(‘r’) - ASCII(‘g’) 
y: ASCII(‘a’) - ASCII(‘e’) 
v: ASCII(‘t’) 

Use ASCI values to fill a 2D matrix 

greate x: ASCII(‘e’) - ASCII(‘r’) 
y: ASCII(‘t’) - ASCII(‘a’) 
v: ASCII(‘e’) 



Text2Image transform 
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greatest common factor of… 

Video transcript 

great x: ASCII(‘r’) - ASCII(‘g’) 
y: ASCII(‘a’) - ASCII(‘e’) 
v: ASCII(‘t’) 

Use ASCI values to fill a 2D matrix 

greate x: ASCII(‘e’) - ASCII(‘r’) 
y: ASCII(‘t’) - ASCII(‘a’) 
v: ASCII(‘e’) 



Classifier 
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0 
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0 
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0 
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Algebra 

Chemistry 

Arithmetic 
Geometry 
Probability 
Calculus 
Differential Equations 
Trigonometry 
Biology 
Cosmology and Astronomy 
Organic Chemistry 

Healthcare and Medicine 
Physics 

Padding (1 x 1) 
Conv (3 x 3 x 
32), with ReLU 

Dropout (50%) 
Fully Connected 
(128), with Gaussian 

Input 
Transcript image 

Output 
Class labels 

Model 
A Convolutional Neural Network (CNN) 

Parameters 

Optimiser Learning rate Loss function 

Adamax 0.002 Categorical Cross Entropy 



Data 

• The “Khan Academy on a Stick” public 

dataset 

• 2,545 videos recorded from 2006 to 2013 
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Video statistics per class. Total of 2,545 videos running 380 hours 



Data 
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Histogram of video frame resolutions 

Histogram of video durations 

• Variance of the frame 

resolution due to sketching 

tablet change 

• Variance of video duration 



Data split 
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Video statistics per class 
(2,545 videos running 380 hours) 

Projection of the training and testing 
sets using PCA extracted from SFIs 

80% 

20% 
Training

Testing

Training and testing subsets of videos 
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Metrics 
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0 0 1 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 1 

Prediction 

Ground truth 

Label Accuracy = 1.0 

0 0 1 0 0 0 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 1 

Prediction 

Ground truth 

Label Accuracy = 0.92 

0 0 1 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 1 

Prediction 

Ground truth 

Class Accuracy = 1.0 

0 0 1 0 0 0 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 1 

Prediction 

Ground truth 

Class Accuracy = 0.0 

K: Number of images, N: 13 labels, y: output 



Results 

Research Background Our method Experiments Conclusions 

• MLP, Decision Trees, K-NN, and Random Forest are fed feature vector of word 

frequencies [B and Cook, IEEE Trans. SMC 2008] 

97.87% 97.53% 
90.71% 88.51% 91.87% 

83.10% 
74.08% 

37.42% 

22.64% 

6.33% 

Our method MLP Decision
Trees

K-NN Random
Forest

  Label Accuracy Class Accuracy

Models performances 



Results 
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Performances of CNN and MLP during training 
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CNN Label Accuracy CNN Class Accuracy

MLP Label Accuracy MLP Class Accuracy

• MLP, Decision Trees, K-NN, and Random Forest are fed feature vector of word 

frequencies [B and Cook, IEEE Trans. SMC 2008] 



Results 
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Why does the model work despite of sparse inputs? 

97.87% 95.43% 
83.10% 74.08% 

CNN PCA + K-NN

  Label Accuracy
Class Accuracy

Classifier performances Synthetic feature image 

 CNNs perform well on sparse inputs, supporting results by Wang et 
al. ICCV 2015 



Results 
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Why does the model work despite of indistinctive data? 

SFI 

• Synthetic feature images (SFI) from low-level text features 

are used to train a CNN with a high accuracy 

 Our results support Cummins et al. and Zhang et al.’s 

Random image 

• Zhang et al. (ICCV 2016) have trained a CNN with an 

ImageNet-size  of random pixels images. The model 

memorised hem with high accuracy 

Speech spectrograms 

• Cummins et al. (INTERSPEECH 2017, ACM MM 2017) have 

use a pre-trained CNN on image spectrums 



Contribution 
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• Improving the state of the art in educational video classification 

• Supporting research in deep learning using sparse and synthetic images 

Future work 

Video retrieval system Output: Khan Academy videos Input: Sketch query 

… 



Modern Art! 
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Malevich Square 
Kazimir Malevich (1915) 

SFI Square 
Dublin City University (2017) 
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